Every Finite Group is the Automorphism Group of Some Finite Orthomodular Lattice

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Every Finite Group Is the Automorphism Group of Some Finite Orthomodular Lattice

If L is a lattice, the automorphism group of L is denoted Aut(L). It is known that given a finite abstract group H, there exists a finite distributive lattice D such that Aut(D) £= H. It is also known that one cannot expect to find a finite orthocomplemented distributive (Boolean) lattice B such that Aut(B) s= H. In this paper it is shown that there does exist a finite orthomodular lattice L su...

متن کامل

THE AUTOMORPHISM GROUP OF FINITE GRAPHS

Let G = (V,E) be a simple graph with exactly n vertices and m edges. The aim of this paper is a new method for investigating nontriviality of the automorphism group of graphs. To do this, we prove that if |E| >=[(n - 1)2/2] then |Aut(G)|>1 and |Aut(G)| is even number.

متن کامل

On the nilpotency class of the automorphism group of some finite p-groups

Let $G$ be a $p$-group of order $p^n$ and $Phi$=$Phi(G)$ be the Frattini subgroup of $G$. It is shown that the nilpotency class of $Autf(G)$, the group of all automorphisms of $G$ centralizing $G/ Fr(G)$, takes the maximum value $n-2$ if and only if $G$ is of maximal class. We also determine the nilpotency class of $Autf(G)$ when $G$ is a finite abelian $p$-group.

متن کامل

The Automorphism Group of Commuting Graph of a Finite Group

Let G be a finite group and X be a union of conjugacy classes of G. Define C(G,X) to be the graph with vertex set X and x, y ∈ X (x 6= y) joined by an edge whenever they commute. In the case that X = G, this graph is named commuting graph of G, denoted by ∆(G). The aim of this paper is to study the automorphism group of the commuting graph. It is proved that Aut(∆(G)) is abelian if and only if ...

متن کامل

The Automorphism Group over Finite Fields

It is shown that the invertible polynomial maps over a finite field Fq, if looked at as bijections Fq −→ Fq , give all possible bijections in case q = 2, or q = p where p > 2. In case q = 2 where r > 1 it is shown that the tame subgroup of the invertible polynomial maps give only the even bijections, i.e. only half the bijections. As a consequence it is shown that a set S ⊂ Fq can be a zero set...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1976

ISSN: 0002-9939

DOI: 10.2307/2041882